

Self-Adapting Large Visual-Language Models to Edge Devices across Visual Modalities

https://github.com/ramdrop/edgevl

Kaiwen Cai¹, Zhekai Duan³, Gaowen Liu², Charles Fleming², Chris Xiaoxuan Lu³
¹University of Edinburgh, ²Cisco Research, ³University College London

Task: to predict the scene classes of the non-RGB images based on the open texts

apartment	bathroom	bedroom/hotel	bookstore/library	classroom	closet	computer cluster
conference room	copy/mail room	dining room	game room	gym	hallway	kitchen
laundry room	living room/lounge	lobby	office	stairs	storage/basement/garage	misc

Open Vocabulary Scene Classification

Categorizes images into a wide range of scenes, including those **not seen** during training

Limitation 1: Modality

RGB modality

non-RGB modality

Lecture theatre Forest Rest space Highway

Correct Wrong Wrong

A Fact: vision-language models excel in understanding RGB images but struggle with non-RGB ones.

A Question: Can we adapt the visual embedding capabilities of vision-language models to non-RGB images while simultaneously reducing the computational footprint of the adapted model?

Limitation 2: Computation Resource

Internet-scale images

A100 cards

Domain images

CPU

	Vision-Language Model on a server	Model on an edge device
Dataset Size	Large	Small
Computation Resource Demand	High	Low

Proposed EdgeVL

Stage-1: Dual-Modality Knowledge Distillation

Automatic Dataset Curation

Keep samples the largest similarity scores:

$$c_i = \max\{s_k \mid s_k = \frac{e^{\Phi_{img}(x_i)^{\top} \Phi_{text}(y_k)}}{\sum_{k}^{|\mathcal{S}|} e^{\Phi_{img}(x_i)^{\top} \Phi_{text}(y_k)}}, k = 1, 2, \dots, |\mathcal{S}|\},$$

Feature Distillation

RGB features are used as pseudo labels:

$$\mathcal{L}_d = d(\Phi_{img}(x), \Phi_{img}^{stu}(x')) + d(\Phi_{img}(x), \Phi_{img}^{stu}(x)).$$

After Stage 1: model can take either modalities as input.

Stage-2: Quantization-aware Contrastive Learning

QAT Meets Contrastive Learning

Combine quantization-aware training with contrastive learning, which helps to align the embedding space.

Triplet Sampling

semi-hard condition helps improve training convergence speed and align embeddings.

After Stage 2: accuracy increases by 15.4% while model size is 93-fold smaller.

Performance comparison aginst SOTAs

Methods	Bits	Scar	nNet (%	%) ↑	EuroSAT (%) ↑		
Methods	DIGS						
Pretrained CLIP-B 40	F32	4.5	36.2	20.4	16.8	40.4	28.6
Pretrained CLIP-G 40	F32	6.2	47.3	26.8	16.9	54.0	35.5
Frank [17]	F32	8.3	21.7	15.0	49.2	37.9	43.5
Gupta 23	F32	16.0	17.5	19.8	54.2	42.4	48.3
CMKD 24 (non-RGB)	F32	37.8	11.5	24.6	61.2	34.4	47.8
CMKD 24 (RGB)	F32	4.0	42.5	23.2	20.1	62.4	41.2
Fida [46]	F32	38.9	5.8	22.3	56.7	20.3	38.5
CQD 45	F32	40.1	6.7	23.4	62.4	36.4	49.4
SKD 52	F32	31.2	37.8	34.5	22.9	50.3	36.6
EdgeVL (DAT-T)	Int8	47.9	52.0	49.9	61.0	65.7	63.3
EdgeVL (Swin-T)	Int8	46.0	48.7	47.4	61.3	67.1	64.2
EdgeVL (ViT-S)	Int8	42.0	47.5	44.7	62.9	66.8	64.8

EdgeVL with different backbones has higher accuracy than comparing methods.

EdgeVL greatly speed up the inference speed of large vision-language models.

Ablation study: the effectiveness of Stage-1

Methods	Bits	Sca	nNet ((%)	EuroSAT (%)		
Wethods	Dits						
CMKD 24 (non-RGB) CMKD 24 (RGB)	F32	37.8	11.5	24.6	61.2	34.4	47.8
Stage-1 (Dual-modality)	F32	38.6	40.6	39.6	61.5	60.3	60.9

Our dual-modality is effective in learning two modalit's features.

Ablation study: the effectiveness of Stage-2

Methods	Bits	DAT-T (%)			Sw	vin-T (%)	ViT-S (%)		
Methods	Ditts									
Stage-1	F32	38.6	40.6	39.6	39.9	41.2	40.5	37.8	40.7	39.3
+PTQ [27]	Int8	33.0	36.5	34.8	29.0	31.7	30.3	24.7	25.9	25.3
+QAT 27	Int8	39.4	41.2	40.3	38.9	39.7	39.3	37.7	41.1	39.4
$+\mathrm{QViT} \left[32 \right]$	Int8	35.0	38.0	36.5	36.5	38.5	37.5	31.4	35.3	33.3
+Stage-2	Int8	47.9	52.0	50.0	46.0	48.7	47.4	42.0	47.5	44.7

Our stage-2 is effective in improving accuracy for quantized models.

Generelization capability

Methods	Bits	N.	YU2 (%	%)	SUNRGBD (%)			
Wethods								
Pre-trained CLIP-G	F32	25.7	69.7	47.7	18.0	54.3	36.2	
Pre-trained CLIP-B	F32	22.6	62.2	42.4	15.2	47.2	31.2	
EdgeVL: DAT-T	Int8	51.1	54.3	52.7	28.6	31.8	30.2	
EdgeVL: Swin-T	Int8	43.4	43.3	43.4	30.0	31.4	30.7	
EdgeVL: ViT-S	Int8	41.0	40.5	40.8	25.8	28.0	27.0	

EdgeVL has comparable generalization capability than CLIP.

Demonstration of EdgeVL's classification

Demonstration of EdgeVL's classification

Demonstration of EdgeVL's classification

Future Works

- Enhance adaptation techniques by improving generalization performance for RGB images in crossmodal scenarios.
- Enhance the framework's versatility and effectiveness to generative vision language models.