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Robotics & Computer Vision has endless applications

Industrial Robots Agricultural Drones




82% of all internet traffic is video.
Over 500 hours of video are uploaded to YouTube every minute.
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Energy limited due Power limited due
to battery capacity to heat dissipation

® The average battery life of a drone is 20-30 minutes per charge.
® Processing and storing video data on social media platforms generate significant heat and limit
power usage.



Why are standard cameras incapable?

e Standard Camera Produces frames at around 30 FPS speed

Standard Camera

Gehrig et al., Asynchronous, Photometric Feature Tracking using Events and Frames, ECCV’18, Oral Talk



Why are standard cameras incapable?

e Standard Camera Produces frames at around 30 FPS speed

Standard Camera

Gehrig et al., Asynchronous, Photometric Feature Tracking using Events and Frames, ECCV’18, Oral Talk



Why are standard cameras incapable?

e Standard Camera Produces frames at around 30 FPS speed

Standard Camera

Gehrig et al., Asynchronous, Photometric Feature Tracking using Events and Frames, ECCV’18, Oral Talk



Could Event Camera be the alternative solution?

e Traditional Camera - captures a series of frames at a fixed frame rate
e Event camera — captures individual pixels’ intensity changes,
asynchronously. Output is a stream of events.
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Event-Based Vision Camera

Brandli et al., A 240x180 130 dB 3 ps Latency Global Shutter Spatiotemporal Vision Sensor, IEEE J. Solid-State Circuits, 2014



Can Event Camera tackle this problem?

Event Camera :
RGB Camera :

Temporal resolution: 33000 ps or 30 FPS

Temporal resolution: 1 ps

High dynamic range: 84 dB

High dynamic range: 120 dB

Low power: 20mW

High Latency

Low transmission bandwidth: 200 kb/s

Standard Camera Event-Based Vision Camera

Gehrig et al., Asynchronous, Photometric Feature Tracking using Events and Frames, ECCV’18, Oral Talk



Experimental Set Up

Two event cameras
(Davies346) separated
by depth camera (Intel
D435) structure
mounted on Robotic
arm (UR10).

Objects cluttered on
the flat wooden
platform in low and
bright light conditions.




Spiking Neural Network
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Comparative Visualization of SNNs approaches

Overview of Standard Spiking Encoding and Membrane Threshold Methods

Spikes Fired at output of the neuron
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'} Comparative
Visualization of
Thresholding
Method

_—— e — - —
e ~

SOTA Thresholding Method

_____________

- ————— e ———————

(@) *
: [ Unstable Dynam (B)
! Threshold :
Statistical X |
=
Cues :| s [
H |
| & W/ :
II |
I > |

T == == e

|
I
I
] i
I
Do
|
\

——— o ————————

- —— = ———

mmm——————

————————————————————————————

Threshold

\'l-————————’

- wm wm mm mm o mm mm o Em owm

______________




Generalisation Capabilities (using LIF and SrRm)

« Classification and Event-wise Segmentation Accuracy across Various
Datasets and Models

Classification Segmentation
Method N-MNIST | DVSI128 | CIFARIO |[N-ImageNet ESD-1 | ESD-2
SRM LIF |SRM LIF |SRM LIF |SRM LIF |SRM LIF |SRM LIF
Spiking RBM [30] 92.1 93.16 | 87.38 90.21 83.04 86.25|39.47 40.19 [48.95 51.05| 45.2 50.31

Spiking MLP (BP) [31] 94.52 97.66 | 90.72 93.4 |86.23 90.06 | 41.15 43.36 [49.53 54 | 45.5 52.42
Spiking MLP (STDP) [13]{93.47 95 | 90.8 92.01|87.5 91.7 |44.53 45.55|52.63 58.84| 46.7 49.44
Spiking MLP (STBP) [38]|97.13 98.89|92.54 93.64 [86.23 91.73 [ 46.12 47.16 | 55.82 63.09 | 49.07 51.37

DT1 [18] 99.05 99.4 [95.01 96.88 |89.17 92.65 | 48.52 47.73|57.55 61.45|50.13 54.59
DT2 [21] 98.13 98.24(92.54 95.54 |89.38 91.47 |47.02 48.83 [ 58.28 64.3 |53.49 56.5
BDETT [11] 99.15 99.45|94.09 96.05|91.61 93.5 |48.93 49.51|61.02 65.39|51.36 55.46

ABN (Ours) 99.23 99.48|95.64 98.74(93.5 94.74(56.73 57.04|61.56 67.29|56.23 58.04




Method | Model [MAC|AC |Power (W)

Calabrese [8]| CNN | 285 | O 0.541
Baldwin [4] | CNN | 963 | O 1.56
Asude [3] [Hybrid| 235 | 81 0.404

Power _ Asude [3] | SNN | 0.6 [123| 0.053
Consumption BDETT [3] | SNN | 0.7 |115] 0.046
Comparison Ours SNN | 0.4 |105| 0.038

* We evaluate SNNs' energy efficiency by calculating the total
number of accumulate (AC) operations, which are mainly sparse
due to the binary nature of spikes. Using 7 nm CMOS technology
data, one 32-bit AC operation consumes 0.38 pJ. We use this to
estimate power usage across different SNN methods. AC
operations are quantified by multiplying the architecture-based
count by the average spiking activity, giving us a ratio of total
spikes to total neurons in each layer.



Conclusion

» The Asynchronous Bioplausible Neuron (ABN) method introduces innovative components that enhance
neuron model functionality: Membrane Gradient (MG) for directional control of membrane potential,
Threshold Retrospective Gradient (TRG) for independent and controlled spike burst suppression, and
Spike Efficiency (SE) for improved processing efficiency using asynchronous event data.

+ Validation Across Conditions: ABN has been effectively tested on various datasets including N-
MNIST, ESD-1, ESD-2, DVS128-Gesture, N-ImageNet, and CIFAR-10 DVS, proving its versatility in
object segmentation and image classification.

 Efficiency Studies: ABN includes studies on neuron firing stability and efficiency, along with a
comparison of its power consumption against leading methods, highlighting its potential for energy-
efficient applications.
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A globally leading university, stimulating positive change and shaping the future

Mission
Catalyze growth in the rapidly evolving knowledge-based economy of Abu Dhabi and the UAE, being a destination of
choice for world-class education, research, innovation and enterprise to the benefit of society locally and globally.”
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