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Contrastive Learning Benefits from Positives Beyond 
Simple Data augmentation

NNCLR (ICCV’21), using the 
nearest neighbor as positive

All4One (ICCV’23), using centroid 
of multiple nearest neighbors



Limitations of Nearest Neighbors

▪ False positives in the early training stage

▪ “Easy” positives because the model can already generate close embeddings 
for these examples

NNs at different training stages



Motivation

▪ Unconditional diffusion model already learns good semantic embedding

▪ Semantic and background features are decoupled in different layers

▪ Control the semantics of the generated images by modifying the latent 
embedding in random sampling

t-SNE plot from latent features of 
diffusion model trained on Cifar10

Setting latent features to 0 during random 
sampling (Semantic is missing)



Hard Positive Generation by Feature Interpolation

diffusion model
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anchor image hard positives
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Contrastive Learning with Synthetic Positives (CLSP) 
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Linear Evaluation Results



Transfer Learning Results
Pre-trained on Cifar10, Cifar100, and STL10

Pre-trained on ImageNet100



Impact of Feature Interpolation Weight

anchor 0 0.1 0.3 0.5 0.7 0.9 1.0𝜔 =

• ℎ = 𝑤 ∗ ℎ + 1 −𝑤 ∗ ℎ𝑎𝑛𝑐ℎ𝑜𝑟

• 𝜔 controls the degree of randomness in the semantic during sampling



Positive Candidate Set Size and Loss Weight

Accuracy changes with different candidate set size
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Accuracy changes with different 𝜆



Thank you!
Code: https://github.com/dewenzeng/clsp

https://github.com/dewenzeng/clsp
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