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Out-Of-Distribution Detection

In Dlstrlbutlon(ID)

SVHN PIaces Textu re "U

Out-Of-Distribution(OOD) inputs: samples from an unknown distribution that
the network has not been exposed to during training phase
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Information Theory

»Information Bottleneck Theory:
L=1Z,X)-pIZ)Y)

» lllustration: information relationship between
Inputs, features, classification and OOD
detection.

Classification-relevant
U .=I(Z;Y)

{(Inputs)

Classification—irrelevan

Detection-relevant
U,=1(Z;T|Y) T
(OOD detection)




Our Propositions

Proposition 1. (Quver-confidence due to mazimizing U.) Maximizing the mu-

tual information U, exclusively on ID training data according to Information
Bottleneck Theory leads to over-confidence on known classes.

H(Y|Z)> H(Y,t = in|Z) + H(Y,t = out|Z)

Proposition 2. (Compression of Ug due to optimizing Information Bottleneck
theory) Optimizing the classification objective leads to the compression of class-
rrelevant detection-relevant information in the representation. Formally, let Z,,;y,

be the representation variable oblained by optimizing classification objective until
convergence. Ve > 0, we have

ID classification training formulation can lead to:
Over-confidence on Known Classes (Proposition 1)
Compression of Detection-relevant Information (Proposition 2)



OER Learning Method

» Training Procedure:
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Experiments

O Main Results O Ablation of Regularization Losses

Table 1: OOD detection and ID classification performance on CIFAR-100 (ID) with
ResNet-34. | means smaller values are better and 1 means larger values are better.

Bold numbers indicate superior results. Table 2: Ablation of proposed loss functions on different 1D datasets.

Method SVHN Places365 LSUN iSUN Textures Average CIFAR-100 ImageNet- 100

FPR, AUCt FPR| AUCt FPR| AUCt FPR| AUCt FPR| AUCt FPR| AUCt ACCtH Les Luvmt Lree  Libr )
MSP 45.2 90.3 84.6 71.8 84.0 74.2 85.7 73.9 81.7 73.2 76.2 76.8 70.3 FPR95L AURO CT : FPR95i AUROCT
ODIN 7.8 98.6 79.7 77.3 47.9 92.3 7.3 82.5 70.5 82.5 56.6 86.6 70.3 N 60.8 85.3 . 54.8 88.0
Maha R87.6 80.7 84.1 73.1 84.3 79.2 84.1 TR.7 61.7 84.4 80.3 79.2 70.3 . : .

N i ) , . ‘ ) v v 39.4 90.0 i 51.3 88.4

Energy 75.8 77.5 79.1 774 41.6 93.1 76.2 82.7 68.3 82.9 68.2 82.7 70.3 '
DICE 43.7 97.2 85.0 75.9 43.7 95.7 75.2 80.9 75.0 80.8 64.5 87.9 70.3 v v v 34.7 90.5 ! 5l1.1 88.6
VOSs 774 74.1 80.8 74.5 75.6 82.6 68.3 85.4 61.5 85.3 T2.8 80.3 74.3 ( / / 38.4 90.2 : 46.2 90.4
SSD -+ 40.4 94.1 79.8 78.9 50.9 91.7 81.1 83.3 54.6 89.6 61.4 87.3 75.9 :
KNN -+ 45.7 91.1 79.5 79.3 48.5 91.0 7.4 832.4 53.5 88.8 60.9 86.1 75.9 '/ ‘/ '/ ‘/ 28'4 91'2 : 43'7 90'9
NPOS 15.4 96.8 79.3 71.3 43.2 87.4 7.7 86.4 45.2 89.4 46.1 86.2 75.5
CIDER 16.1 97.6 78.3 75.1 17.1 96.2 49.5 89.2 36.4 92.0 39.4 90.0 75.1




Visualizations

O T-SNE Visualization of Feature Distribution
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O Visualization of OOD Score Distribution
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Conclusion

» |D classification formulation can lead to over-confidence and undesired
compression of OOD detection-relevant information.

» OER could decrease model’'s confidence based on temperature coefficient
tuning, and increase the mutual information between feature representation
and potential OODs.

» OER could effectively enhance OOD detection without compromising ID
classification accuracy.
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