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Deep Neural Networks for 3D Point Cloud

without preprocessing.

PointNet and PointNet++ are the first to apply DNN to raw 3D point cloud

Various ideas have been proposed, continuously enhancing the model

performance and computational efficiency.

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

PointNeXt: Revisiting PointNet++ with Improved

PointNet++: Deep Hierarchical Feature Learning on
Training and Scaling Strategies

Point Sets in a Metric Space
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Meta Architecture for Point Cloud Analysis

ASSANet: An Anisotropic Separable Set Abstraction
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Figures from Qi, C.R. et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space”
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Challenges in 3D Point Cloud Model Training

A\ Challenges
T the size of models & datasets = 7T training cost for 3D point cloud models

b Performance Bottleneck

Farthest Point Sampling (FPS): Takes up average 44.69% of overall training time.
Aggregation: Takes up average 22.84% of overall training time.

@ Our Proposal

#1. L-FPS: Eliminates redundant distance calculation of FPS in the training pipeline.
#2. Fused Aggregation: Reduce redundant memory accesses during aggregation.
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Farthest Point Sampling - Observations

EI Observation #1. FPS in the training process incurs a significant number of

redundant distance calculations across epochs.

\EI Observation #2. The key factor in achieving high-quality sampling is to ensure
a minimum spacing among the sampled points, and this information can be

obtained in advance, prior to training.
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Technique #1. Lightweight FPS (L-FPS)

® We propose Lightweight FPS via Progressive Near Point Filtering.
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Aggregation - Observations

\El Observation #1. There are redundant memory accesses to intermediate
values in forward and backward passes.
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Aggregation - Observations

\El Observation #2. Ineffectual computations are performed in the backward

pass.
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Technique #2. Fused Aggregation

® We propose Fused Aggregation, which significantly reduces redundant memory

accesses.
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Evaluation

Hll Fused Aggregation

3.0 L N
Accuracy (Stdev.) §322 §3.05
Dataset Model 2.5
Baseline L-FPS
PN++ | 63.19(0.54) | 63.39 (0.34) 22.0
©
S3DIS MB-L 69.82 (0.40) 69.76 (0.40) 1.5
MB-XL | 70.67 (0.37) | 70.74 (0.43) & 10
PN++ 59.42 (0.26) 59.54 (0.57) 05
ScanNet | MB-L | 70.52(0.27) | 70.54 (0.31)
MB-XL | 71.78 (0.28) | 71.74 (0.44) 0-0pN++ MB-L MB-XLIPN++ MB-L MB-XL] Geo
- : - - S3DIS ScanNet mean

NVIDIA RTX 3090
Accuracy Max 0.06 mloU loss, potential mloU gain of 0.2

Throughput 2.25x end-to-end speedup
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http://arc.snu.ac.kr/pubs/eccv24 pointcloud.pdf
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Sourced code available at https://github.com/SNU-ARC/Frugal PN Training
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