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Deep Neural Networks for 3D Point Cloud
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● PointNet and PointNet++ are the first to apply DNN to raw 3D point cloud 
without preprocessing.

● Various ideas have been proposed, continuously enhancing the model 
performance and computational efficiency.

Figures from Qi, C.R. et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space”
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Challenges in 3D Point Cloud Model Training
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d ↑ the size of models & datasets à ↑ training cost for 3D point cloud models 
Challenges

Farthest Point Sampling (FPS): Takes up average 44.69% of overall training time.
Aggregation: Takes up average 22.84% of overall training time.

Performance Bottleneck 

#1. L-FPS: Eliminates redundant distance calculation of FPS in the training pipeline.
#2. Fused Aggregation: Reduce redundant memory accesses during aggregation.

Our Proposal
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Farthest Point Sampling - Observations
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Observation #1. FPS in the training process incurs a significant number of 
redundant distance calculations across epochs.
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Observation #2. The key factor in achieving high-quality sampling is to ensure 
a minimum spacing among the sampled points, and this information can be 
obtained in advance, prior to training.
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Technique #1. Lightweight FPS (L-FPS)
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● We propose Lightweight FPS via Progressive Near Point Filtering. 

Good Sampling Quality
Minimum spacing 

among the sampled 
points are ensured.

Enough Randomness
Points are randomly 

selected every iteration 
in progressive near 

point filtering.
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Aggregation - Observations
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Observation #1. There are redundant memory accesses to intermediate 
values in forward and backward passes. 
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[Forward]  “𝟑𝒏𝒅!×𝒏𝒏𝒆𝒊𝒈𝒉. + 𝒏𝒅!” memory access
[Backward]  “𝟑𝒏𝒅!×𝒏𝒏𝒆𝒊𝒈𝒉. + 𝟐𝒏𝒅!” memory access
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Aggregation - Observations
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Observation #2. Ineffectual computations are performed in the backward 
pass.
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Technique #2. Fused Aggregation
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● We propose Fused Aggregation, which significantly reduces redundant memory 
accesses.
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[Forward]  Memory access reduced from “𝟑𝒏𝒅!×𝒏𝒏𝒆𝒊𝒈𝒉. + 𝒏𝒅!” to “𝒏𝒅!×𝒏𝒏𝒆𝒊𝒈𝒉. + 𝟐𝒏𝒅!” 
[Backward]  Memory access reduced from “𝟑𝒏𝒅!×𝒏𝒏𝒆𝒊𝒈𝒉. + 𝟐𝒏𝒅!” to “𝟒𝒏𝒅!” 
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Evaluation
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Dataset Model
Accuracy (Stdev.)

Baseline L-FPS

S3DIS
PN++ 63.19 (0.54) 63.39 (0.34) 
MB-L 69.82 (0.40) 69.76 (0.40)

MB-XL 70.67 (0.37) 70.74 (0.43)

ScanNet
PN++ 59.42 (0.26) 59.54 (0.57)
MB-L 70.52 (0.27) 70.54 (0.31)

MB-XL 71.78 (0.28) 71.74 (0.44)

Accuracy Max 0.06 mIoU loss, potential mIoU gain of 0.2
Throughput 2.25x end-to-end speedup

NVIDIA RTX 3090
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Please contact to the author or refer to the full paper for more details
http://arc.snu.ac.kr/pubs/eccv24_pointcloud.pdf

Sourced code available at https://github.com/SNU-ARC/Frugal_PN_Training
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