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Motive

Research Motive

2, Semi-supervised domain adaptation (SemiSDA) adapt the source model to the target domain using both
labeled and unlabeled target data.

How do we collect labeled data in target devices like smartphones or medical applications?

Ja

Users can provide small amounts of feedback!
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Semi-supervised domain adaptation (SemiSDA) adapt the source model to the target domain using both
labeled and unlabeled target data.

How do we collect labeled data in target devices like smartphones or medical applications?

2 Users can provide small amounts of feedback!

Actually, users might be more likely to provide feedback when the model makes incorrect predictionsff
Did you consider this angle?

KAIST Lunit NBR-RLD ECCV24 Slide



Motive

Research Motive

2 Semi-supervised domain adaptation (SemiSDA) adapt the source model to the target domain using both
labeled and unlabeled target data.

How do we collect labeled data in target devices like smartphones or medical applications?

% Users can provide small amounts of feedback!

Actually, users might be more likely to provide feedback when the model makes incorrect predictionsz.[r
Did you consider this angle?
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Research Motive

IJ

Semi-supervised domain adaptation (SemiSDA) adapt the source model to the target domain using both
labeled and unlabeled target data.

How do we collect labeled data in target devices like smartphones or medical applications?

Users can provide small amounts of feedback!

Actually, users might be more likely to provide feedback when the model makes incorrect predictionsff
Did you consider this angle?

Previous works hadn't considered that before. That’s an interesting observation! [doing some
experiments...]

I've been looking into existing SemiSDA methods, and I've noticed they often yield suboptimal results
in the scenario.

KAIST

Lunit NBR-RLD ECCV24 Slide



Motive

Research Motive

76.0  Source model: 56.5%

735 8 random feedback.
' o + existing methods
(o)) 0:
71.0 o
-t B negatively biased feedback.
68.5 . + existing methods
66.0

] B negatively biased feedback.{i.
Avg. accuracy of 7 SemiSDA methods + existing methods with ours

on DomainNet-126

Le Previous works hadn't considered that before. That’s an interesting observation! [doing some
experiments...]

W I've been looking into existing SemiSDA methods, and I've noticed they often yield suboptimal results
in the scenario.
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User Feedback

Rethinking user-provided feedback

® Users generally expect their feedback to be used as a basis of model improvement, motivating feedback on
misclassified samples.

® For example, a radiologist might log a misdiagnosed chest X-ray by the model, as its accuracy directly impacts
the patient’s survival.
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User Feedback

Rethinking user-provided feedback

[
misclassified samples.

the patient’s survival.

e Target domain

@ Correct prediction @ Incorrect prediction i Feedback (GT)
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Users generally expect their feedback to be used as a basis of model improvement, motivating feedback on

For example, a radiologist might log a misdiagnosed chest X-ray by the model, as its accuracy directly impacts

A, B%: Possibility of getting feedback (GT)
Presence of Pneumonia

| Prediction result ——p

:Presence  4—
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: Absence 44—

Presence
Real world: B% >> A %
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Rethinking user-provided feedback

Users generally expect their feedback to be used as a basis of model improvement, motivating feedback on
misclassified samples.

For example, a radiologist might log a misdiagnosed chest X-ray by the model, as its accuracy directly impacts
the patient’s survival.
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e We introduce this novel view called Negatively Biased Feedback (NBF).
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User Feedback

Influence of NBF on SemiSDA

® We conduct extensive studies, revealing interesting insights:
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User Feedback

Influence of NBF on SemiSDA

® We conduct extensive studies, revealing interesting insights:

a. User-provided feedback in practice (NBF) has a biased distribution.

b.  NBF causes the source model to be adapted with suboptimal results.
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User Feedback

Influence of NBF on SemiSDA

® We conduct extensive studies, revealing interesting insights:

a.

User-provided feedback in practice (NBF) has a biased distribution.
b.

NBF causes the source model to be adapted with suboptimal results.
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User Feedback

Counterintuitive Effect of NBF

e Our intuitive reasoning probably suggests that NBF provides more information than RF by correcting more
source model deficiencies, and thus leads to better adaptation performance.

® Our work highlights the importance of careful design when using user feedback in real-world scenarios.
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Solution

Prerequisite: Previous SemiSDA methods

® Their model adaptation combines cross-entropy loss for labeled data with consistency regularization on multi-
view unlabeled data.

6@

B I
Lsup = E Z ylbafg(x?b))a Lunsup = % (yulban(“Q(xulb)))
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e Existing methods, overlooking the realistic setup of NBF, suffer from inadequate adaptation performance.
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Solution

Prerequisite: Previous SemiSDA methods

® Their model adaptation combines cross-entropy loss for labeled data with consistency regularization on multi-
view unlabeled data.
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Loup = 3 b§:1:H(ylbba fo(x15)), Lunsup = B H(Gorb, fo(2(zorp)))
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e Existing methods, overlooking the realistic setup of NBF, suffer from inadequate adaptation performance.

e we focus on developing a solution that (i) can easily combine with existing DA methods without modifying their
core strategies and (ii) can be applied to a wide range of benchmarks.
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Solution

Retrieval Latent Defending
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Our RLD involves the following steps:
@ Prior to each epoch, we generate a candidate bank of data points.
@~@® For each adapting iteration, we balance the mini-batch by retrieving latent defending samples from the bank.

®~® The model is then adapted using the reconfigured mini-batch and following the baseline SemiSDA approach.
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Experimental Results

® We evaluate NBF's unexpected influence using various benchmarks, including Image cIassiﬁcationWﬁif, Medical
image diagnosisBdlal, and Semantic segmentation ¢S,
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