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The Good Old Ways
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General Research Questions
• What is a definition for explanation?

• How explanations can be evaluated?
• How to make explanations less subjective?
• Why the gradient of deep networks is sparse?
• What causes the inconsistencies in explanations?
• Why the gradient sign changes with small noise?
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Our Focus

Our Research Questions
• What are the sources of uncertainty in explanations?

• How to quantify our uncertainty in explanation methods?
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Our Focus

A High-level Trajectory is Worth 16x16 Papers
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The First Step

Our Approach

• A probabilistic representation for explanations.

• A spectral representation for explanations.

E = ∇f(X) s.t. X ∼ P
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The First Step

Our Findings

• Gradient operator amplifies the attribution of high-frequency features.

• Perturbation mitigates the attribution of high-frequency features.
• Sign of the gradient depends on the chosen perturbation.
• Gradient squared is a better design choice compared to gradient.
• A justification for the inconsistencies in the explanations.
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The First Step
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The Next Step

What is Next?
• Relate consistency of explanations to their uncertainty.
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Our Next Work in the Literature
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