et An Adaptive Screen-Space Meshing Approach = il & il
e for Normal Integration g= -~ W/

Moritz Heep & Eduard Zell
University of Bonn

=

Motivation Curvature Results

Increasing the resolution of the normal map improves the | | Calculate curvature by solving the generalised Eigenproblem Our method is not bound to the image resolution. Instead, the
accuracy of fine structures but increases computational e e AN mesh resolution is controlled by a user parameter €.
complexity. In smooth, featureless regions, this added e feo, k; - [v; = I1v; Therefore, we conduct all experiments at three quality
complexity yields little additional information. -\ W=\ - N settings: high (0.1 mm), medium (0.3 mm) and low (1 mm).
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Compression

We investigated the compression rates of our method on the
DiLiGenT-MV dataset [4]. Even for the tightest error threshold,
we only need 6 to 18% of vertices compared to pixels.

Normals Curvature

We calculate surface gradients from n - 9;x = 0 and use finite differences for 9;7.

Adaptive Screen-Space Meshing

Initialize Mesh by covering each pixel with two triangles.

After 3h After 5min

Our adaptive triangle mesh leads to a much sparser representation and much faster 42512 Pixels 2523 Vertices 1118 Vertices 529 Vertices
integration times while generating comparable results. The normal map was 64MP. Normal Map @ 0.1 mm @ 0.3 mm @1 mm

Split / Collapse Edges to make their length closer

We introduce an adaptive screen-space meshing approach to o . 0 - At higher resolutions, we achieve even more compression.
reduce complexity before integration and give a full derivation ‘ to the optimal engt Experiments suggest that the number of vertices grows

of the normal integration on general triangle meshes. 65 significantly slower than the number of pixels.
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that aims to keep the deviation between mesh and Since = x~1. curvature can be used to Heep22
Fine details (in red) typically u nderlyi ng su rface belOW q user th reShOld c. estimate the deviation € between the mesh and Dataset

i m . x. - - Dragon
only make up a fraction of the underyling surface [2]. PR . «  Female
an object‘s surface.
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Flip Edges that are locally Non-Delaunay.

The fewer variables also make our linear solver converge

By focusing on fine details and removing redundant significantly faster. The results suggest that our method has a
Information, we can avoid the quadratic growth of variables Move Vertices to the weighted centroid of their star by solving lower runtime complexity with increasing resolutions.

with increasing geometric resolution in pixel-based methods. A A
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For the Combined column, we performed a pixel-wise integration [1] followed by conventional

We derive a discretized version of this energy for triangle meshes. As in the pixel remeshing [2]. For the Uniform column, we created meshes with uniform edge lengths that
. . . . . . match the number of vertices of their adaptive counterparts.

case, integration is performed by solving a linear system but with much fewer

variables.
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