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Introduction

• Merge a three-stage workflow into a singular, comprehensive 
framework.

•  This efficiency is achieved by:
• Bypassing the need for COLMAP
• Avoiding model initialization 

• Integrates Segment Anything Model with LLM to achieve local editing
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Contributions

• Text-conditioned Pose-Free 3D synthesis
• Gaussian Splatting trained on a casually recorded video

• Autoregressive Editing:
• Preserving consistency across multiple views 

• Conditioned on already edited adjacent frames

• Mask Generation using LLM and SAM models

• GS25 Datastet
• 25 casually captured monocular videos
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Van Scene 



Consistent Multi-View 2D Editing
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• Mask Generation using LLM and SAM models

• Per-Frame Editing using IP2P

• Autoregressive Editing:
• Editing Conditioned on already edited adjacent frames

Single Frame IP2P

Autoregressive IP2P

• Image-conditional noise estimation, εθ (et, E, ∅T ) across all 
frames in W:



Recap - 3D Gaussian Splatting: Representing 
Scenes as Gaussians
• Each 3D Gaussian is parametrized by:

• Mean μ interpretable as location x, y, z;

• Covariance Σ;

• Opacity σ(𝛼), 

• Color parameters

• The impact of a 3D Gaussian i on an arbitrary 3D 

    point p in 3D is defined as:

• The image formation model of Gaussian splatting:
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Training Mechanism
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• Parameterizing Gaussians: 
Gaussian point, h = {μ, Σ, c, α, m}

• A pre-trained Depth Estimator to initialize 
point clouds

• 3D point cloud based Gaussians initialization



Training Mechanism
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• Relative Pose Estimation:

• A  learnable SE-3 affine transformation:

• Gradual 3D Scene Expansion

• We increase the density of the Gaussians currently under 
reconstruction as new frames are introduced

• Regularize the Estimated Pose:



Qualitative Results
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• Local Editing
• Background is intact
• Geometric Editing



3D Editing Comparison
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Original Scene

Give the wheels Blue Color and Make the recycle bins brown.

3DEgoIN2N

Turn his beard into blue.



Qualitative Results
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GS25 Dataset Contribution

• Comprises of 25 scenes casually recorded from phone
• No Stabilizer

• No calibrated cameras

• Variety of scenes:
• Indoor & Outdoor

• Single & Multi-object

• 360 & 180 degree views

• Public dataset with and w/o COLMAP poses
• https://3dego.github.io/
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three_people_standing

William_statue

Bear_and_girl



Quantitative Results
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Beats Pose-known methods under most settings



Quantitative Results
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Beats Pose-Unknown NeRF Methods: Implicit vs Explicit Modeling



Recap and Limitations

• Eliminated COLMAP requirement

• Model initialization on unedited images is not necessary

• Text Conditioned 3D scene from a monocular video

• LLM guided SAM has been applied into 3D scene editing

• Limitations:
• 3D model training is required on edited scenes

• Not a one-shot editor – Gaussians are learnt for a specific scene
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Thanks
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