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1. Background

Labeled Data Unlabeled Data
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The purpose of the Novel Class Discovery task:
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» Retain the model's cognition of known
class samples

» Promote the model's learning of
unfamiliar novel class samples
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Training samples:
» Known class samples with labels
» Novel class samples without labels

Evaluation:
» Accuracy
» Clustering accuracy

Class 2

Known Classes Novel Classes



2. Motivations

Motivations: Existing NCD methods focus on establishing a shared representation space for known and novel
instances or classes. However, a long-neglected issue is the imbalanced number of samples from known and novel
classes pushes the model toward the dominant party, making it challenging to trade-off between reviewing known

classes and discovering novel classes.

Analysis:

Inter-instance methods aim to explore
relationships among instances via
contrastive learning, rank statistics,
consistency and regu larization, and
example mixing.

Inter-class methods aim to explore
relationships among multiple classes.

Inter-instance Representation

Inter-class Representation
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A shared representation space
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A shared representation space

A shared representation space
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The known representation space
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The novel representation space
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The novel representation space

Can we use all sample information to review known classes and discover novel classes simultaneously?



3. Proposed Method

(a) Overview (b) Pseudo-label synthesis

|
Deepcopy , ! |
1
- iginal Prediction Synthetlc Pseudo-label |i
= I RN
(o} .
2 ; D ! x0.14 x 0.74
= : ‘_ . Self-=Cooperation :
e v Predicted Features |
Knowledge Distillation |-
. T o ! 1l alm
_ 034 056 053 ! JoaT  xbE2
|
0.74 0.52 0.35 l i l .
_ Similarity Score : i u_l_ll L
The representation space i x 0.56 x0.12
of novel classes !
Known-Class // i Ill. l
~ Head I ! x0.537  x035"
: - ! Ll
=S The r:];resentatlmn space ! il 2 e
- NBVEI‘CIaSS 06 Known classes : ‘ ¥
. Head Mutual Information // : l
D Tﬂrget BEE E Pseudo-label l J.l. l J I.




3. Proposed Method

Preliminaries:

A mini-batch training set:
D' = {(z},y1),.., (. yn) }
P = ¥, ..., 2]

Y= {1,...,C"}

Two classification heads:

I, = [W(BE(z:)), h*(B(x:))] ,l; € R +C"
Similarity Score Matrix:
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Pseudo-Label Synthesis:
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Self Knowledge Distillation Objectives:
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4. Experimental Results

Performance Comparison

Table 2: Comparison with state-of-the-art methods on the unlabeled training subset, Table 3: Comparison with state-of-the-art methods on the testing subset, using task-
using task-aware evaluation protocol. Bold and underline numbers denote the best agnostic evaluation protocol.
and the second best results, respectively.

Method CIFAR100-50 CIFAR100-80 Stanford Cars CUB Aircraft
RO Known Novel All |[Known Novel All |[Known Novel All |Known Novel All [Known Novel All
Wetod  CIERRID CIEAGN00-20 CIECRNIA0 TosegNeb- 100 Stnlond G OUB  Aimarals RS+ [11]| 69.7 409 55.3| 712 568 68.3| 81.8 3.7 56.3| 80.7 518 66.1] 664 365 5L5
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NCL [59] 034405  86.60.4 592.74+1.2 ) 435412  48.140.9 43.0405 Table 4: Experimental results with an increasing number of unlabeled classes on
Joint [20] 93.44+0.6  76.4+2.8 - - - - - CIFAR100. Results are reported on the testing subset about both known and novel
DualRank [58] 91.6+06  75.3+2.3 - - - - - classes (averaged over 3 runs), using the task-agnostic evaluation protocol.
ComEx [54]  93.6+£0.3 85.7+0.7 53.4£1.3 - - = =
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4. Experimental Results

Table 6: Ablation study of our method for four dataset splits on the unlabeled train-
ing subset, using task-aware evaluation protocol. Results contain clustering accuracy

(ACC), Normalized Mutual Information (NMI), and Adjusted Rand Index (ARI) that

Ablation study about

are averaged over 3 runs.

training losses ol £ pr|  CIFARI00-20 CIFAR100-50 Stanford Cars CUB
kon Lnok BUAcc NMIL ARI [ACC NMI  ARI |ACC NMI  ARI [ACC NMI  ARI
| X X - |87.57 08361 0.7771|62.62 0.6861 0.4742|48.59 0.6913 0.3480 | 63.56 0.7869 0.5002
@| v X V|91.57 08617 0.8333|65.50 0.6914 0.4985 |54.19 0.7270 0.4029 [70.50 0.8177 0.5719
@) X v /9218 08695 0.8453 |65.98 0.7069 0.5165|49.58 0.6970 0.3597 [68.77 0.8040 0.5486
@)| v v v |92.56 0.8754 0.8495|68.18 0.7128 0.5415|56.84 0.7388 0.4278[73.14 0.8262 0.5976
G)| v v X|92.24 0.8713 08464 |66.35 0.7094 0.5256 | 53.57 0.7168 0.3952 [69.78 0.8074 0.5635

Ablation study about similarity score matrix

Table 7: Ablation study about the simi-
larity score matrix S. All results are eval-
uated on the unlabeled training set.

Settings ’Stanford Cars CUB FGVC-Aircraft

Average S 49.3 64.7
Random S 47.9 62.8
Our 56.8 73.1

52.6
50.2
56.5

(b) UNO + SCKD
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Fig. 4: t-SNE visualization for known and novel
classes on CIFAR100-50 testing set, using task-
agnostic evaluation protocol.



5. Conclusion

* We consider a practical but long-neglected challenge in the NCD task, i.e., the
imbalanced number of samples from known and novel classes, making it difficult to
balance reviewing known classes and discovering novel classes.

* We propose a simple yet effective SCKD method. SCKD can associate every sample
for simultaneously reviewing known classes and discovering novel classes by building
a cooperative learning paradigm.

* Extensive experiments on six benchmark datasets for novel class discovery show that
the proposed method performs competitively and outperforms the state-of-the-art
methods, demonstrating the effectiveness of SCKD.
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