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• Core idea from machine learning1

• Different representations -> Different generalization properties

• Ensemble to create a more complete representation

• Find the strongest set via benchmarking
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Benchmarking vision encoders
• 8 different encoders 
• Different objectives

• Masked modeling, contrastive learning, etc.


• Different training datasets

• LAION-2B, JFT-3B, etc.


• Different model sizes

• 300M to 4B 

• CLIP1, EVA2, DINOv23, SIGLIP4, OpenCLIP5, SILC6, ViT-e7, ViT-G8 

• Evaluation tasks: Captioning, VQA 

1Radford et al. 2021 
2Fang et al. 2023 
3Oquab et al. 2023 
4Zhai et al. 2023 
5Cherti et al. 2023 
6Naeem et al. 2023 
7Chen et al. 2022 
8Zhai et al. 2022 
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Observations
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Benchmarking vision encoders 
Observations

• No encoder perform consistently well 
• Using a single encoder is inherently limited


• Encoders with different biases can perform similarly 
• Different cues to exploit

Please see the paper for details

28



Can we broaden the visual capabilities of VLMs  

through combining vision encoders with different biases?
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Key results
• State-of-the-art performance for captioning & VQA tasks


40



Key results
• State-of-the-art performance for captioning & VQA tasks


Caption: A large bus sitting  
next to a very tall building.

COCO1

General Captioning

1Chen et al. 2015 
2Agrawal et al. 2019 
3Goyal et al. 2017 
4Marino et al. 2019 
5Hudson et al. 2019 
6Gurari et al. 2018 41



Key results
• State-of-the-art performance for captioning & VQA tasks


Caption: A large bus sitting  
next to a very tall building.

Caption: A crab cake sandwich 
on a hamburger bun.

COCO1

General Captioning

NoCaps2

Novel object captioning 

1Chen et al. 2015 
2Agrawal et al. 2019 
3Goyal et al. 2017 
4Marino et al. 2019 
5Hudson et al. 2019 
6Gurari et al. 2018 42



Key results
• State-of-the-art performance for captioning & VQA tasks


Caption: A large bus sitting  
next to a very tall building.

Caption: A crab cake sandwich 
on a hamburger bun.

Q: What color is the hydrant?  
A: Black and Yellow

COCO1

General Captioning

NoCaps2

Novel object captioning 

VQAv23

General VQA

1Chen et al. 2015 
2Agrawal et al. 2019 
3Goyal et al. 2017 
4Marino et al. 2019 
5Hudson et al. 2019 
6Gurari et al. 2018 43



Key results
• State-of-the-art performance for captioning & VQA tasks


Caption: A large bus sitting  
next to a very tall building.

Caption: A crab cake sandwich 
on a hamburger bun.

Q: What color is the hydrant?  
A: Black and Yellow

Q: What company makes 
this sneakers? A: Converse

COCO1

General Captioning

NoCaps2

Novel object captioning 

VQAv23

General VQA

OKVQA4

Outside Knowledge

1Chen et al. 2015 
2Agrawal et al. 2019 
3Goyal et al. 2017 
4Marino et al. 2019 
5Hudson et al. 2019 
6Gurari et al. 2018 44



Key results
• State-of-the-art performance for captioning & VQA tasks


Caption: A large bus sitting  
next to a very tall building.

Caption: A crab cake sandwich 
on a hamburger bun.

Q: What color is the hydrant?  
A: Black and Yellow

Q: What company makes 
this sneakers? A: Converse

Q: On which side of the image 
is the man? A: Right

COCO1

General Captioning

NoCaps2

Novel object captioning 

VQAv23

General VQA

OKVQA4

Outside Knowledge

GQA5

Spatial Reasoning

1Chen et al. 2015 
2Agrawal et al. 2019 
3Goyal et al. 2017 
4Marino et al. 2019 
5Hudson et al. 2019 
6Gurari et al. 2018 



Key results
• State-of-the-art performance for captioning & VQA tasks


Caption: A large bus sitting  
next to a very tall building.

Caption: A crab cake sandwich 
on a hamburger bun.

Q: What color is the hydrant?  
A: Black and Yellow

Q: What company makes 
this sneakers? A: Converse

Q: On which side of the image 
is the man? A: Right

Q: Who is this mail for?  
A: Unanswerable

COCO1

General Captioning

NoCaps2

Novel object captioning 

VQAv23

General VQA

OKVQA4

Outside Knowledge

GQA5

Spatial Reasoning

VizWiz-QA6

Unanswerable Questions

1Chen et al. 2015 
2Agrawal et al. 2019 
3Goyal et al. 2017 
4Marino et al. 2019 
5Hudson et al. 2019 
6Gurari et al. 2018 



Key results
• State-of-the-art performance for captioning & VQA tasks


COCO1

General Captioning

Caption: A large bus sitting  
next to a very tall building.

NoCaps2

Novel object captioning 

Caption: A crab cake sandwich 
on a hamburger bun.

VQAv23

General VQA

Q: What color is the hydrant?  
A: Black and Yellow

OKVQA4

Outside Knowledge

Q: What company makes 
this sneakers? A: Converse

GQA5

Spatial Reasoning

Q: On which side of the image 
is the man? A: Right

VizWiz-QA6

Unanswerable Questions

Q: Who is this mail for?  
A: Unanswerable

1Chen et al. 2015 
2Agrawal et al. 2019 
3Goyal et al. 2017 
4Marino et al. 2019 
5Hudson et al. 2019 
6Gurari et al. 2018 



• State-of-the-art performance for captioning & VQA tasks
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More results & analysis

• Qualitative results on captioning and VQA


• Ablations of design choices (training data, fine-tuning, LLM, etc.)


• Contribution of different vision encoders 
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