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Problem: Single Tag Bias in CLIP-based Models

* Single tag bias manifests as a disproportionate focus on a singular tag (word) while
neglecting other pertinent tags.
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Method: Text-Tag Self-Distillation (TTD)

 Two-step fine-tuning approach that effectively mitigates single tag bias

* Enables models to recognize all relevant tags
* Model-agnostic

* No external supervision is required
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(a) Tag selection by pixel-tag scoring (b) Text-tag self-distillation
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Method: Text-Tag Self-Distillation (TTD)

e Stepl) Tag Selection by Pixel-Tag Scoring
* Identify which tags in the text are relevant to the image
* Move from global to pixel-level embedding

e Score tags based on their correlation with specificimage regions
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Method: Text-Tag Self-Distillation (TTD)

* Why do we do this?

* Global embedding often overemphasizes the dominant tag

* Pixel-tag scoring ensures an accurate extraction of all tags
relevant to the image
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Method: Text-Tag Self-Distillation (TTD)

* Step2) Text-Tag Self-Distillation
* Generate a composite mask using multiple tags

e Self-distillation ensures the model learns to align the text with the composite mask

—» min-max normalization
—>» zero mask
\\ stop gradient
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Method: Text-Tag Self-Distillation (TTD)

e  Why do we do this?

* Self-distillation ensures that the model recognizes and weighs all
relevant features

* More balanced understanding of the image-text relationship
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Experiments: Multi-Tag Selection

* Tag selection using external models
* Extracting Image-irrelevant Tags (red)

* Overlooking Image-relevant Tags (blue)
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Experiments: Multi-Tag Selection

e Quantitative results

Simage t€nds to focus on a single dominant tag
* F1Score:82.8%

* Significant improvement over external models or baseline scoring methods

Table 2: Multi-Tag Selection. The best results are bold and the second best results
are underlined. P, precision; R, recall; F1, F1 score.

(a) Comparison based on the use of NLP models. (b) Comparison based on scoring methods.

Method PP R F1 Ace Scoring P R F1 Acc mAP
NLTK 59.8 83.7 69.8 79.6 simage (Eq. (1))[02.5]28.6 43.7 79.5 83.2
Vicuna-7B 44.1 71.0 54.4 70.9 stext (Eq. (7)) 85.6 29.7 44.1 79.0 82.1
Vicuna-33B 52.7 70.7 60.4 75.9 Simsge— Sesxs 955 45.1 59.0 82.6 §4.5
Qwen-72B 69.3 56.2 62.1 80.9 ‘

— ; Spixel (Bq. (2)) 82.9 74.5 78.5 88.6 90.3
spixal (Eq. (2)) 82.9 74.5 78.5 88.6 + TTD (Ours) 88.3 78.0(82.8/91.0 93.7
+ TTD (Ours) 88.3 78.0 82.8'91.0
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Experiments: Text-Level Segmentation

* CaptionloU improvement: +9.2% for MaskCLIP, +5.1% for TCL

Text Ground Truth MaskCLIP MaskCLIP+QOurs TCL TCL+Ours

red stop sign on
a stone road

| bird taking a bath
in waterfall :

i sheepdog gripping
¢ | the wool on a sheep !

Method CaptionloU(%) mFPR mFNR
MaskCLIP [44] 41.0 0.179 0.411
4 TTD (Ours) 50.2 (19.2) 0.256 0.242
TCL [4] 60.4 0.199 0.198

+ TTD (Ours) 655 (+5.1) 0.163 0.182
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Experiments: Open-Vocabulary (Tag-Level) Segmentation

Image Ground Truth MaskCLIP MaskCLIP+Qurs TCL TCL+Owurs
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Experiments: Open-Vocabulary (Tag-Level) Segmentation

* mloU improvement: +8.5% for MaskCLIP, +3.5% for TCL

Table 4: Open-Vocabulary Semantic Segmentation. The methods are all trained
only with image and text data, without additional annotations or external models. We
use ViT-B/16 as the backbone for all methods. £, external language models.

Method Train datasets i VOC Context Object Stuff City ADE Avg.
GroupViT [38] CC12M+YFCC v 51.1 19.0 27.9 15.4 11.6 9.4 22.4
ViewCo [33] CC12M+YFCC v 524 23.0 23.5 « " - -
CoCu [37] CC3M+CC12M+COCO v 51.4 23.6 22.7 15.2 22:1 12.3 24.6
OVSegmentor [39] CC4M [39] v 53.8 20.4 25.1 - - - -
TagAlign [24] CC12M v 53.9 33.5 33.3 25.3 27.5 17.3 31.8
ReCo [35] ImageNet1K X 25.1 19.9 15.7 14.8 21.1 11:2 18.0
ZeroSeg (6] ImageNet1K X 40.8 20.4 20.2 - - - -
ViL-Seg [25] CC12M X 37.3 18.9 18.1 - - - -
SimSeg [41] CC3M+CCI2M X 574 26.2 29.7 . - - :
SegCLIP [27] CC12M+COCO X 52.6 24.7 26.5 16.1 11.2 8.8 23.3
MaskCLIP [44] - X 29.3 201 15.5 14.7 21.6 104 19.0

+ TTD (Ours) CC3M+CCI2M X 43.1 (+13.8) 31.0 (+9.9) 26.5 (+11.0) 19.4 (+4.7) 32.0 (+10.4) 12.7 (+2.3) 27.5 (+8.5)
TCL [4] CC3M+CC12M X 55.0 33.8 31.6 22.4 24.0 15.6 30.4

+ TTD (Ours) CC3M+CCI2M X 61.1 (+6.1) 37.4 (+3.6) 37.4 (+5.8) 23.7 (+1.3) 27.0 (+3.0) 17.0 (+1.4) 33.9 (+3.5)
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Ablation

* Using both distillation and auxiliary losses yields best performance (+6.1% mloU)

* Pixel-tag scoring outperforms standard tag selection methods (higher F1 and mloU)

(a) Effect of Loss Terms. (b) Effect of Tagging Method.
Laistin (Eq. (4)) Ltag(Eq. (5)) CaptionloU  mloU Method CaptionloU mloU
X X 60.4 55.0 Baseline [4] 60.4 55.0
X 60.7 (+0.3) 58.5 (+3.5) NLTK [26] 61.8  56.5
X 63'6 (+3'2) 60'8 (+5'8) Sirnage (Eq. (l)) 563 525
65.5 (+5.1) 61.1 (+6.1) i (hq () 65.5 61.1
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Conclusion

* Text-Tag Self-Distillation (TTD) addresses single tag bias in CLIP-based models
 Model-agnostic with no external data or model required

* Enhanced performance across three tasks: multi-tag selection, text-level
segmentation, and open-vocabulary segmentation
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