Exploring Pre-trained Text-to-Video Dittusion

~

Models for Referring Video Object Segme glcgn ?

Zixin Zhu, Xuelu Feng, Dongdong Chen, Junsong Yu
Chunming Qiao, Gang Hua

Code: https://github.com/buxiangzhiren/VD-IT

% University at Buffalo The State University of New York




% University at Buffalo The State University of New York

Robot dancing in times square. Clown fish swimming through the 2
[1] https://modelscope.cn/models/iic/text-to-video-synthesis/summary coral reef.
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Motivation: Temporal Consistency Prior via Diffusion
Pretraining

Text Prompt: Two women are skydiving.
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K-Means clustering of video frame features

T2V diffusion pretraining = Consistent text prompts guide all video frames = Temporal
consistency = Improved downstream video understanding



-[é University at Buffalo The state University of New York

Motivation: Temporal Consistency Prior via Diffusion
Pretraining

Video Understanding
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T2V diffusion pretraining = Consistent text prompts guide all video frames = Temporal
consistency = Improved downstream video understanding
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Background: Referring Video Object Segmentation

Referring Text: (1) A black shooting gun (2) A person shooting with a rifle

Input Video Output Video
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Introduction

Visual Encoder: Video-Swin-Transformer

V—Swin Video

Temporal Inconsistency

Visual Encoder: Text-to-Video Diffusion Model (Ours)

VD-IT VD-I

Temporal Consistency

Analysis of learned features of existing methods that use discriminative
: Temporal inconsistency in visual features will
 subsequently cause temporally inconsistent

 masks. 6
[2] Liu Z, Ning J, Cao Y, et al. Video swin transformer[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022

backbone (Video Swin Transformeri2l) and our methods (VD-I and VD-
IT) that use fixed pretrained generative T2V model.
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Robustness against light noise. We modify the
brightness of various frames randomly and
compare the loU of segmentation results under
changing lighting conditions. The results are
reported on Ref-Youtube-VOS.

Time
“Temporal Semantic Consistency. Averaged over 1,000

samples from RefYoutube-VOSBI, the cosine similarity
between the Region of Interest (Rol) features of the
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initial frame and the following seven frames is reported. .
[3] Seo, S., Lee, J.Y., Han, B.: Urvos: Unified referring video object segmentation network with a large-scale benchmark. In: ECCV. pp. 208-223. (2020)
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Experiments

Comparison with the state-of-the-art methods on Ref-
Youtube-VOS and Ref-DAVIS17M1. * denotes that we run
the official codes to get the results.

(These two datasets emphasize daily life videos.)

[4] Khoreva, A., Rohrbach, A., Schiele, B.: Video object segmentation with
language referring expressions. In: ACCV. pp. 123-141. (2019)

[5] Gavrilyuk, K., Ghodrati, A., Li, Z., Snoek, C.G.: Actor and action video
segmentation from a sentence. In: CVPR. pp. 5958-5966 (2018) 9
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Experiments

Referring Text: (1) A black shooting gun (2) A person shooting with a rifle

SgMgfe]

[6] Miao, B., Bennamoun, M., Gao, Y., Mian, A.: Spectrum-guided multi-granularity referring video object segmentation. 10
In: ICCV. pp. 920-930 (2023)
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Experiments

Referring Text: (1) Black and white bike (2) A man holding a bike

11
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Conclusion

In this paper, we present a pioneering exploration into leveraging video priors, specifically temporal
consistency, acquired by pre-trained text-to-video diffusion models for video understanding tasks.

* Pioneering Use of Video Priors: We are the first to explore the use of temporal consistency priors
acquired by pre-trained text-to-video diffusion models for video understanding tasks.

* Enhanced Temporal Consistency: Our research shows that these pre-trained diffusion models exhibit
significantly better temporal consistency compared to conventional discriminatively fine-tuned video
encoders.

* |nnovative R-VOS Framework: We propose a new R-VOS framework, VD-IT, which incorporates
several innovative designs that improve the quality of extracted features and boost overall

performance.
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