

Think before Placement: Common Sense Enhanced Transformer for Object Placement

Yaxuan Qin, Jiayu Xu, Ruiping Wang, Xilin Chen

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China {qinyaxuan21s, xujiayu22s, wangruiping, xlchen}@ict.ac.cn

MOTIVATION

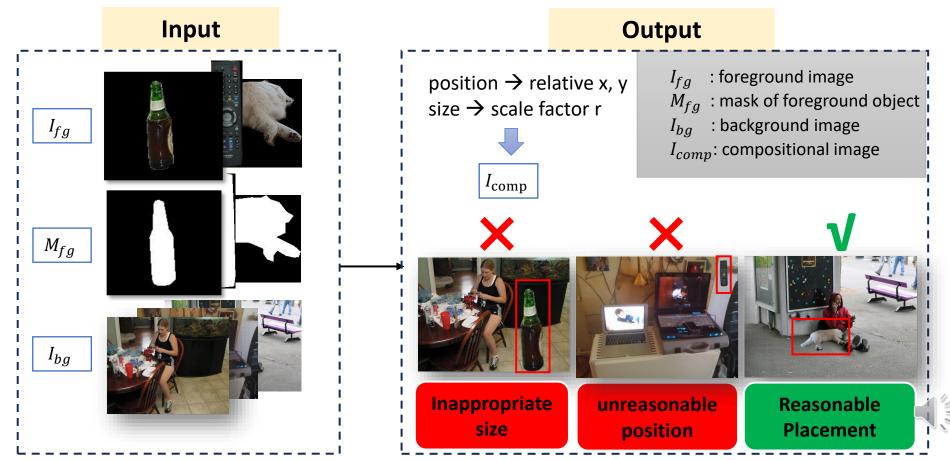
➤ Image Composition: paste a foreground object from one image on

another background image

Object placement: size & position

☐ Image blending: natural boundary

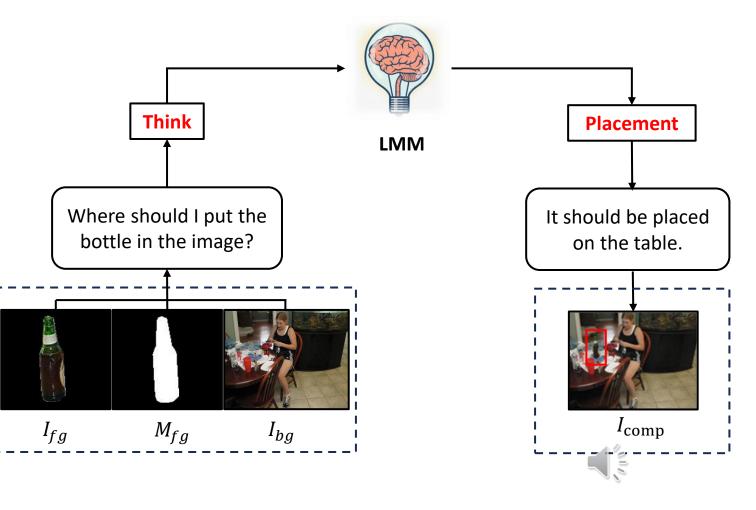
☐ Image harmonization: illumination statistics


art · entertainment · data augmentation

MOTIVATION

≻Object Placement

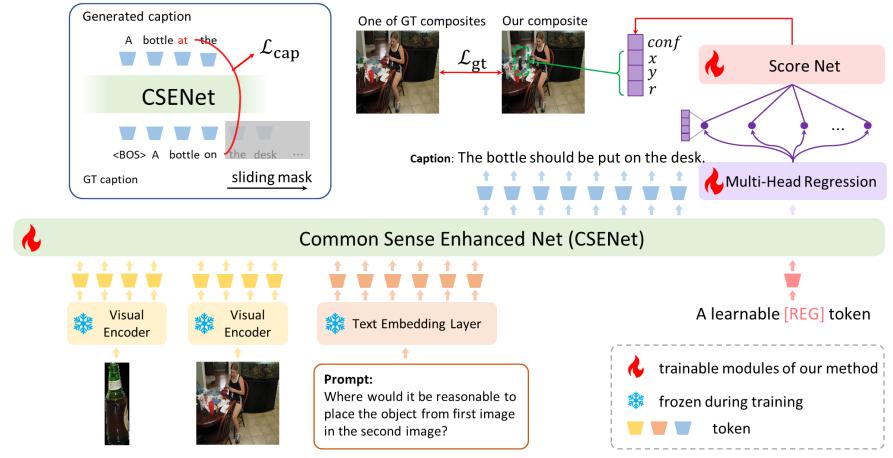
MOTIVATION



Common sense enhanced

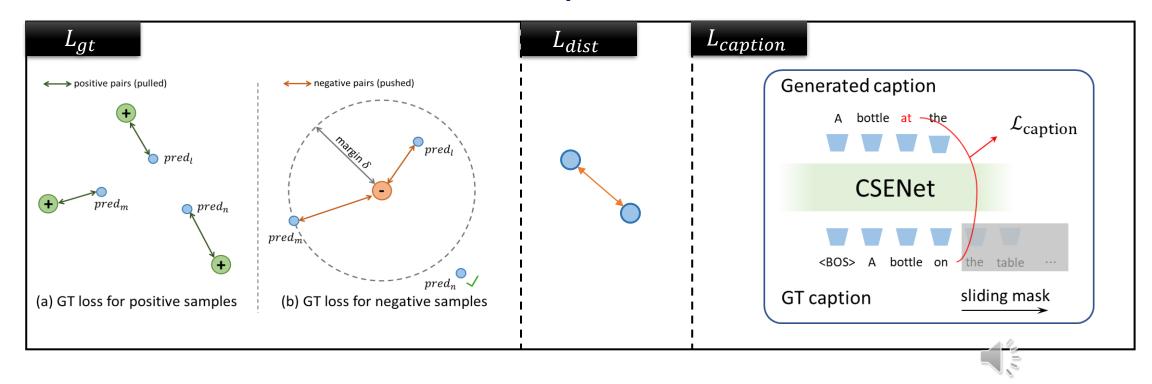
> Think before Placement

☐ Think: generate the guiding caption


□ Placement: predict the suitable position and size based on the result of "Think" process

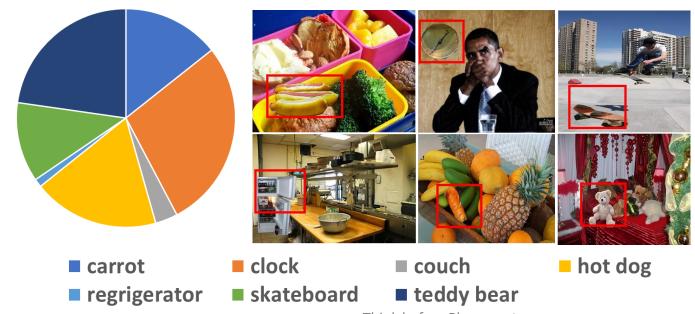
FRAMEWORK

>LLM decoder + multi-head regression + score net



LOSS DESIGN

$$\succ L_{gt} + L_{dist} + L_{caption}$$


☐ Ground truth Loss + Distance Loss + Caption Loss

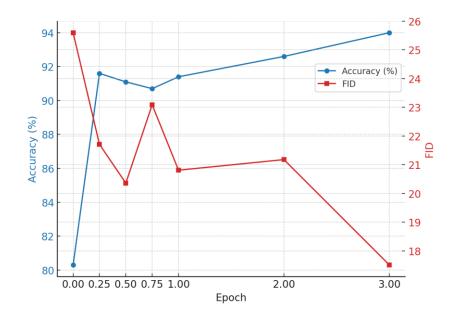
OPAZ dataset

- OPAZ dataset: We construct an evaluation dataset to test the zero-shot transfer capabilities for the object placement task
 - **8,160** generated image, of which **1,390** are rational and **6770** are irrational
 - ☐ About 7 distinct categories of foreground objects
 - About 15 representative images for each category
 - ☐ About 10 suitable background images for each category

> Experiments on OPA dataset

□Comparisons with baselines

Model	User Study↑	Accuracy 1	FID↓	Mean IoU ↑	LPIPS ↑
TopNet [CVPR'23]	0.072	44.7	28.81	0.227	0.110
TERSE [CVPR'19]	0.096	67.9	46.94	0.171	0
PlaceNet [ECCV'20]	0.140	68.3	36.69	0.277	0.160
GracoNet [ECCV'22]	0.192	84.7	27.75	0.336	0.206
IOPRE [ICML'23]	0.234	89.5	21.59	0.226	0.214
CSENet (Ours)	0.266	94.0	17.51	0.321	0.137



> Experiments on OPA dataset

□Ablations on the backbone and guiding captions

PT	Caption	#Heads	Accuracy ↑	FID↓
X	w/o	1	72.9	49.45
٧	w/o	1	80.9	39.89
٧	w/o	10	90.8	22.72
٧	Simple	10	91.3	20.07
٧	Detailed	10	94.0	17.51

> Experiments on OPAZ dataset

□zero-shot setting

	User Study↑	Accuracy ↑	FID↓
TopNet [CVPR'23]	0.096	18.9	67.7
TERSE [CVPR'19]	0.115	34.0	81.1
PlaceNet [ECCV'20]	0.142	36.7	63.6
GracoNet [ECCV'22]	0.174	43.1	59.1
IOPRE [ICML'23]	0.221	58.6	27.8
CSENet (Ours)	0.251	61.8	42.1

≻Visualization

□Comparisons with baselines

Thanks for Watching and welcome to our poster!

Think before Placement: Common Sense Enhanced

Transformer for Object Placement

Yaxuan Qin, Jiayu Xu, Ruiping Wang, Xilin Chen

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China {qinyaxuan21s, xujiayu22s, wangruiping, xlchen}@ict.ac.cn

Fri 4 Oct 10:30 a.m. CEST — 12:30 p.m. CEST