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Task: Object Detection and Trajectory Forecasting

e |nput: past LIDAR sweeps and high-definition maps
e CQOutput: Object detections and trajectory forecasts (multiple hypothesis)
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Background: Previous approaches

e Split reasoning about the present and future into separate cascading modules

e Suffer from narrow interfaces and compounding errors
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Background: Modular detection-tracking-forecasting

e A detection, tracker, and forecasting modules are cascaded
e These approaches suffer from narrow interfaces and compounding errors
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Background: Prior end-to-end detection and forecasting

e [racker is replaced by object features from the LIDAR backlbone
e These approaches have wider interfaces, but are still cascading
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DeTra: Formulating the problem as trajectory refinement

e Object queries (features) and poses (coordinates) represent trajectories

o t=0 corresponds to the detection
o 1> 0 corresponds to the forecasts

e These are refined jointly over multiple refinement transformer blocks
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Delra: Model architecture
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DeTra: Attention layers
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Delra: Training
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Delra: Refinement Results
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Delra: Refinement Results
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Comparison results
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DeTra: Comparison results
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DeTra: Comparison results
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Conclusion

We introduce DeTra, a unified model for object detection and trajectory forecasting

e [ormulates detection and forecasting as a single trajectory refinement problem
e Flexible architecture that can handle heterogeneous inputs
e Performs strongly in Argoverse 2 Sensor and Waymo Open Dataset
e Design choices are validated through extensive ablations
o Refinement is key
o Leveraging geometric priors in cross-attention is important

o Every proposed component has a positive contribution



