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Our setting:

Source-free domain adaptation
under class distribution shift
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What is domain adaptation

A way to mitigate the decrease in accuracy when the distributions of the
source and target data are different (i.e., covariate shift)
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What is source-free domain adaptation (SFDA)

In some cases, the source data is unavailable after the source model is
deployed (e.g. for privacy issues)
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What is source-free domain adaptation (SFDA)

o Pseudolabels are normally calculated via nearest neighbors
o Nearby samples in the feature space refine the predictions
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What is source-free domain adaptation under class distribution shift (SFDA-CDS)

o« SFDA methods assume matching class distributions among domains
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What is source-free domain adaptation under class distribution shift (SFDA-CDS)

o« However, inreal scenarios, the number of samples per class differs between
source and target (i.e., class distribution shift)
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« This causes a drop in performance due to the majority/minority bias
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What is source-free domain adaptation under class distribution shift (SFDA-CDS)

o This difficult scenario presents a number of problems
o Standard CDS mitigation methods require labels

o However, we only have a CDS-biased source model and label-less target data

o - This makes estimating the CDS impossible
o Majority and minority classes cannot be determined

o Misclassifications may be due to both either the bias of the source model or the
target data
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Our proposal:

Robust nearest neighbors
for SFDA-CDS
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The effect of CDS in the nearest neighbors algorithm

« The nearest neighbors algorithm is reliable without CDS
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The effect of CDS in the nearest neighbors algorithm

« However, it is sensitive to the majority-minority bias in CDS
o Butin this setting bias cannot be eliminated
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Proposed method: Robust nearest neighbors

. Finding common nearest neighbors between the source and the
generic feature spaces

5
o 5 Unavailable Robust nearest neighbors
= Labeled source data during e e e e o e e e e e e e e e e e e e — — 1
o 2 ) i Ground truth: Glasses |
s l! adaptation Predicted: Glasses | KNN in the source feat. space I
E r 5 ; —-— - - — I
E @ | Pseudolabels : ‘ ‘ ‘ 2 I
| \/ O 2 |
class ID J:kJnDI o o > I + ‘ § commonk n2e|ghbors :
s A (@] = =
288 % —5 ' Qo - (=2) :
Class 258 = Q l »
Distribution Covanate < = o | (K=6) class ID D I
Shift o 5
Shift : — I
classID a |
I ‘ ‘ ‘ @ * I
3 l ' + a class D
2 > 3 = I g I
s £33 o0 .
"’ 41 @ :
#* o6 l 1
z"~ ~ (K=6) classiID —
lass ID . . QA
¢ I KNN in the generic feat. space j) )‘|
Unlobeled target data | J
______________________ i




021 Robust nearest neighbors ECCV2024

Proposed method: Robust nearest neighbors

o Since our framework does not require additional training, it provides
several advantages

> Generic features are only calculated once at the beginning (no extra cost)

o It can also be applied to the setting of test-time adaptation (TTA)

= Running on evaluation mode (no weight update)
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Main results

« Ourrobust nearest neighbors outperform previous methods in
both SFDA and TTA tasks under CDS

Method (SFDA) VisDA-C Office-Home DomainNet

ISFDA 76.69 65.36 79.58

PL base 81.01 56.82 79.48

+ Ours (ResNet) 83.85 55.47 70.28

+ Ours (ViT-B) 83.88 58.71 82.51

+ Ours (Swin-B) 86.64 64.64 78.95

PL guided 83.59 61.05 80.12

+ Ours (ResNet) 86.6 59.67 12.74

+ Ours (ViT-B) 86.72 62.31 83.9

+ Ours (Swin-B) 88.84 69.04 81.4

Method (TTA) VisDA-C Office-Home DomainNet

TENT 48.68 51.15 70.34

+ Shift adapter 72.97 52.78 71.63

Pseudolabel 47.12 52.34 67.06

+ Ours (ResNet) 50.07 52.83 63.01

+ Ours (ViT-B) 49.60 53.95 73.23 d
+ Ours (Swin-B) 52.49 60.16 70.59 1
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Conclusions

o Nearest neighbors used in SFDA pseudolabeling is sensitive to CDS:
Minority target samples are misclassified as majority source classes

o« We proposed a method with no additional training cost to calculate
robust nearest neighbors via features free from the source bias

o Our robust nearest neighbors outperform previous methods in both SFDA
and TTA tasks under CDS
)
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