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Challenges in Federated NAS

C1: Prohibitively Expensive to Satisfy Multiple Inference Deployments Naive Approaches
C2: Don’t Produce Optimal DNNs that satisfy deployment targets

Existing Federated NAS methods

Train And
—>
Search

Depl. Targets

v

_Search

" Train And

J

K times

Train And
Search

X

g
gi:

* O(K) Training Cost
(Challenge 1)

(1}

Inefﬁcien}' DNN Archs
(Challenge 2)

| he contributions are:

1. SuperFedNAS: A federated NAS method that searches/trains rich

SuperFedNAS: Cost-Efficient Federated Neural
Architecture Search for On-Device Inference
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diversity of DNN archs for efficient inference.

2. Satisfies k deployment targets in O(1) cost. Decouples train and
search in federated NAS.

3. Maxnet: A novel training algorithm optimizes a novel objective to

train supernets in FL and reduce interference.
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FedNAS: Federated Deep Learning via Neural Architecture Search. CVPR’20 Workshop. He et al.
FedPNAS: Personalized Neural Architecture Search for Federated Learning. Hoang et al.

ScaleFL: Resource-Adaptive Federated Learning with Heterogeneous Clients. CVPR’23. Ilhan et al.
Inco.: Internal Cross-Layer Gradients For Extending Homogeneity to Heterogeneity in FL. ICLR’23. Chan et al.
Once-for-All: Train One Network & Specialize it For Efficient Deployment. ICLR’20. Cai et al.

Federated Training of Supernet
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Send Supernet (W) To clients  |send Subnets G(W, a;) = W To clients
1. Clients use Progressive 1. Sampling and Assignment of
Shrinking (OFA ICLR’20) to train subnets to clients is random.
Supernets locally. 2. Aggregation with parameter-wise

2. Aggregation

is FedAvg of

Supernet Weights (W)

cardinal averaging based on overlap
of G(W, «;) .

Naive Approaches vs FedAvg
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1. Multi-Stage Supernet FL Training has high training costs.
2. Both naive methods suffer from slow convergence and sub-optimal
accuracy due to interference. Don’t Solve C1 and C2.

Maxnet: Novel Supernet FL-Training Technique

Single-Stage Paradigm (Solves C1). Optimizes a novel objective that:
1. Improves worst-performing DNN arch on each data partition.

2. Samples DNN archs based on overlap G(W, «;)

— W & DNN arch. Loss

Test Accuracy (%)
DNN Arch.€ A Method non-iid=100] non-iid—=1 |non-iid=0.1
FedAvg 89.20 = 0.46(83.42 = 0.19| 77.15 = 2.5
Smallest Single-Staged Supernet FL| 84.6 4 0.19 [83.17 £ 0.12|76.28 4= 1.31
Multi-Staged Supernet FL [84.53 £ 0.58|82.82 4 0.34|76.26 4 2.35
MaxNet 89.42 +0.11| 88.69 4 0.2 |81.81 4 1.59
FedAvg 89.44 4+ 0.67| 87.88 = 0.7 |81.24 &= 1.99
Largest Single-Staged Supernet FL| 87.14 + 0.2 {86.03 £ 0.26|80.02 £+ 2.07
Multi-Staged Supernet FL [86.45 £ 0.53(85.02 & 0.32|78.57 & 2.48
MaxNet 91.34 £ 0.3 [90.91 +0.15(84.72 + 1.78

E fzi:fi
Evaluation
Image Datasets
- Test Accuracy (%)
Billion MACGs) — Method 1 —=rmr w70 TGrFARI00 | CINTCTO0
FedAvg 85.25 +0.46|43.19 +0.54(61.76 == 0.78
0.45.0.95 FedNAS 77.33 £0.31|140.92 4+ 2.21|58.15 == 0.18
FedPNAS | 88.83 £0.5(45.77 £ 0.68| 64.3 4 0.98
SuperFedNAS|89.42 +0.11| 56.35 + 0.3 [73.12 + 0.77
FedAvg 86.36 = 0.22|43.92 &= 0.57| 63 = 0.17
0.95-1.45 FedPNAS [89.27 £0.51| 47.8 26 |66.74 £+ 0.32
SuperFedNAS|(90.22 £ 0.31|57.16 = 0.23| 74.5 £ 0.74
FedAvg 87.09 +0.27|44.4 £ 0.56 | 64 £ 0.07
1.45-2.45 FedNAS 86.41 = 0.1 [55.82 4+ 0.29({69.97 £ 0.27
SuperFedNAS|90.93 £ 0.23|57.85 4+ 0.31| 75.08 & 0.7
FedAvg 89.44 4+ 0.67| 45 +0.27 (66.02 +=0.13
2.45-3.75 FedNAS [89.43 £+ 0.36|58.39 £ 0.23(71.93 £0.13
SuperFedNAS| 91.34 £+ 0.3 [58.25 + 0.39|75.38 + 0.73

Text Dataset

Million MACs| Method |Test Accuracy (%)
0.0.5 FedAvg 48.52 + 0.11 ]
SuperFedNAS 48.22 + 0.27 Tough FL SEttlngz
0.5.1 FedAvg 49.17 + 0.02 1. Shakespeare
' SuperFedNAS| 49.81 4+0.16 dataset
115 FedAvg 51.94 +0.03
' SuperFedNAS| 53.26+0.06 | (LEAF benchmark)

P FedAvg 53.48 £0.09 | 2. Non-iid, &

R SuperFedNAS 54.59 + 0.15 660 clients
)10 FedAvg 53.62 £ 0.1

' SuperFedNAS| 54.61 +0.13
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NvidiaRTX 2080 Ti

Specialized DNNs for Target Depl.

SuperFedNAS specializes
DNN archs for different
deployment targets
Solves C2

Wide/Deep DNN for GPU
Thin/Shallow DNN for CPU
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