SuperFedNAS: Cost-Efficient Federated Neural # Architecture Search for On-Device Inference Alind Khare¹, Animesh Agrawal¹, Aditya Annavajjala¹, Payman Behnam¹, Myungjin Lee², Hugo Latapie², Alexey Tumanov¹ ¹Georgia Tech & ²Cisco Research # Challenges in Federated NAS C1: Prohibitively Expensive to Satisfy Multiple Inference Deployments C2: Don't Produce Optimal DNNs that satisfy deployment targets #### The contributions are: - 1. SuperFedNAS: A federated NAS method that searches/trains rich diversity of DNN archs for efficient inference. - 2. Satisfies k deployment targets in O(1) cost. Decouples train and search in federated NAS. - 3. Maxnet: A novel training algorithm optimizes a novel objective to train supernets in FL and reduce interference. # Related Works | Feature | FedNAS | FedPNAS | ScaleFL | Inco. | SuperFedNAS | |---------------------------|--------|---------|---------|-------|-------------| | Weight-Sharing | | | | | | | Uses NAS | | | | | | | Training Cost for N depl. | O(N) | O(N) | O(N) | O(N) | O(1) | | Satisfies Depl. | | | | | | | @ Inference | | | | | | - 1. FedNAS: Federated Deep Learning via Neural Architecture Search. CVPR'20 Workshop. He et al. - 2. FedPNAS: Personalized Neural Architecture Search for Federated Learning. Hoang et al. - 3. ScaleFL: Resource-Adaptive Federated Learning with Heterogeneous Clients. CVPR'23. Ilhan et al. - 4. Inco.: Internal Cross-Layer Gradients For Extending Homogeneity to Heterogeneity in FL. ICLR'23. Chan et al. - 5. Once-for-All: Train One Network & Specialize it For Efficient Deployment. ICLR'20. Cai et al. # Federated Training of Supernet # Naïve Approaches #### Send Supernet (W) To clients Clients use Progressive Shrinking (OFA ICLR'20) to train Supernets locally. Naïve Approaches vs FedAvg Aggregation is FedAvg of Supernet Weights (W) ## Single-Stage #### Send Subnets $G(W, \alpha_i) = W$ To clients - Sampling and Assignment of subnets to clients is random. - Aggregation with parameter-wise cardinal averaging based on overlap of $\mathcal{G}(W, \alpha_i)$. # Evaluation # **Image Datasets** | | I | Т | | | | | |--------------|-------------|-------------------|--------------------|--------------------------|--|--| | Billion MACs | Method | Test Accuracy (%) | | | | | | | | CIFAR10 | CIFAR100 | CINIC10 | | | | | FedAvg | 85.25 ± 0.46 | 43.19 ± 0.54 | 61.76 ± 0.78 | | | | 0.45-0.95 | FedNAS | 77.33 ± 0.31 | $ 40.92 \pm 2.21 $ | $ 58.15 \pm 0.18 $ | | | | | FedPNAS | 88.83 ± 0.5 | $ 45.77 \pm 0.68 $ | $ 64.3 \pm 0.98 $ | | | | | SuperFedNAS | 89.42 ± 0.11 | 56.35 ± 0.3 | $ 73.12 \pm 0.77 $ | | | | 0.95-1.45 | FedAvg | 86.36 ± 0.22 | 43.92 ± 0.57 | 63 ± 0.17 | | | | | FedPNAS | 89.27 ± 0.51 | 47.8 ± 26 | $ 66.74 \pm 0.32 $ | | | | | SuperFedNAS | 90.22 ± 0.31 | 57.16 ± 0.23 | $oxed{74.5\pm0.74}$ | | | | | FedAvg | 87.59 ± 0.27 | 44.4 ± 0.56 | 64 ± 0.07 | | | | 1.45-2.45 | FedNAS | 86.41 ± 0.1 | $ 55.82 \pm 0.29 $ | $ 69.97 \pm 0.27 $ | | | | | SuperFedNAS | 90.93 ± 0.23 | 57.85 ± 0.31 | 75.08 ± 0.7 | | | | | FedAvg | 89.44 ± 0.67 | 45 ± 0.27 | 66.02 ± 0.13 | | | | 2.45-3.75 | FedNAS | 89.43 ± 0.36 | $ 58.39 \pm 0.23 $ | $ 71.93 \pm 0.13 $ | | | | | SuperFedNAS | 91.34 ± 0.3 | 58.25 ± 0.39 | $\boxed{75.38 \pm 0.73}$ | | | # **Text Dataset** | | Million MACs | Method | $ { m Test\ Accuracy\ (\%)} $ | | |--|--------------|-------------|-------------------------------|---------------| | | 0-0.5 | FedAvg | 48.52 ± 0.11 | T E C | | | | SuperFedNAS | 48.22 ± 0.27 | Tough FL Sett | | | 0.5-1 | FedAvg | 49.17 ± 0.02 | 1. Shakespear | | | | SuperFedNAS | 49.81 ± 0.16 | dataset | | | 1-1.5 | FedAvg | 51.94 ± 0.03 | | | | | SuperFedNAS | 53.26 ± 0.06 | (LEAF benchm | | | 1.5-2.75 | FedAvg | 53.48 ± 0.09 | 2. Non-iid, & | | | | SuperFedNAS | 54.59 ± 0.15 | 660 clients | | | 2.75-4.0 | FedAvg | 53.62 ± 0.1 | OOO CHCHCS | | | | SuperFedNAS | 54.61 ± 0.13 | | #### ough FL Setting. Shakespeare ataset EAF benchmark) # Takeaways Multi-Stage Supernet FL Training has high training costs. Cost (GByl 3000 Both naïve methods suffer from slow convergence and sub-optimal accuracy due to interference. Don't Solve C1 and C2. ## **Maxnet: Novel Supernet FL-Training Technique** ## Single-Stage Paradigm (Solves C1). Optimizes a novel objective that: - Improves worst-performing DNN arch on each data partition. - 2. Samples DNN archs based on overlap $G(W, \alpha_i) = W \& DNN$ arch. Loss | DNN Arch. $\in \mathcal{A}$ | Method | Test Accuracy (%) | | | | |-----------------------------|---------------------------|-------------------|------------------|--------------------|--| | DIVIN AICH. | Medilod | non-iid=100 | non-iid=1 | non-iid=0.1 | | | | FedAvg | 85.25 ± 0.46 | 83.42 ± 0.19 | 77.15 ± 2.5 | | | Smallest | Single-Staged Supernet FL | 84.6 ± 0.19 | 83.17 ± 0.12 | $ 76.28 \pm 1.31 $ | | | Smanest | Multi-Staged Supernet FL | 84.53 ± 0.58 | 82.82 ± 0.34 | $ 76.26 \pm 2.35 $ | | | | MaxNet | 89.42 ± 0.11 | 88.69 ± 0.2 | $ 81.81 \pm 1.59 $ | | | | FedAvg | 89.44 ± 0.67 | 87.88 ± 0.7 | 81.24 ± 1.99 | | | Langert | Single-Staged Supernet FL | 87.14 ± 0.2 | 86.03 ± 0.26 | 80.02 ± 2.07 | | | Largest | Multi-Staged Supernet FL | 86.45 ± 0.53 | 85.02 ± 0.32 | $ 78.57 \pm 2.48 $ | | | | MaxNet | 91.34 ± 0.3 | 90.91 ± 0.15 | 84.72 ± 1.78 | | # Specialized DNNs for Target Depl. - SuperFedNAS specializes DNN archs for different deployment targets - Solves C2 - Wide/Deep DNN for GPU - Thin/Shallow DNN for CPU NvidiaRTX 2080 Ti