

SuperFedNAS: Cost-Efficient Federated Neural

Architecture Search for On-Device Inference

Alind Khare¹, Animesh Agrawal¹, Aditya Annavajjala¹, Payman Behnam¹, Myungjin Lee², Hugo Latapie², Alexey Tumanov¹ ¹Georgia Tech & ²Cisco Research

Challenges in Federated NAS

C1: Prohibitively Expensive to Satisfy Multiple Inference Deployments

C2: Don't Produce Optimal DNNs that satisfy deployment targets

The contributions are:

- 1. SuperFedNAS: A federated NAS method that searches/trains rich diversity of DNN archs for efficient inference.
- 2. Satisfies k deployment targets in O(1) cost. Decouples train and search in federated NAS.
- 3. Maxnet: A novel training algorithm optimizes a novel objective to train supernets in FL and reduce interference.

Related Works

Feature	FedNAS	FedPNAS	ScaleFL	Inco.	SuperFedNAS
Weight-Sharing					
Uses NAS					
Training Cost for N depl.	O(N)	O(N)	O(N)	O(N)	O(1)
Satisfies Depl.					
@ Inference					

- 1. FedNAS: Federated Deep Learning via Neural Architecture Search. CVPR'20 Workshop. He et al.
- 2. FedPNAS: Personalized Neural Architecture Search for Federated Learning. Hoang et al.
- 3. ScaleFL: Resource-Adaptive Federated Learning with Heterogeneous Clients. CVPR'23. Ilhan et al.
- 4. Inco.: Internal Cross-Layer Gradients For Extending Homogeneity to Heterogeneity in FL. ICLR'23. Chan et al.
- 5. Once-for-All: Train One Network & Specialize it For Efficient Deployment. ICLR'20. Cai et al.

Federated Training of Supernet

Naïve Approaches

Send Supernet (W) To clients

Clients use Progressive Shrinking (OFA ICLR'20) to train Supernets locally.

Naïve Approaches vs FedAvg

Aggregation is FedAvg of Supernet Weights (W)

Single-Stage

Send Subnets $G(W, \alpha_i) = W$ To clients

- Sampling and Assignment of subnets to clients is random.
- Aggregation with parameter-wise cardinal averaging based on overlap of $\mathcal{G}(W, \alpha_i)$.

Evaluation

Image Datasets

	I	Т				
Billion MACs	Method	Test Accuracy (%)				
		CIFAR10	CIFAR100	CINIC10		
	FedAvg	85.25 ± 0.46	43.19 ± 0.54	61.76 ± 0.78		
0.45-0.95	FedNAS	77.33 ± 0.31	$ 40.92 \pm 2.21 $	$ 58.15 \pm 0.18 $		
	FedPNAS	88.83 ± 0.5	$ 45.77 \pm 0.68 $	$ 64.3 \pm 0.98 $		
	SuperFedNAS	89.42 ± 0.11	56.35 ± 0.3	$ 73.12 \pm 0.77 $		
0.95-1.45	FedAvg	86.36 ± 0.22	43.92 ± 0.57	63 ± 0.17		
	FedPNAS	89.27 ± 0.51	47.8 ± 26	$ 66.74 \pm 0.32 $		
	SuperFedNAS	90.22 ± 0.31	57.16 ± 0.23	$oxed{74.5\pm0.74}$		
	FedAvg	87.59 ± 0.27	44.4 ± 0.56	64 ± 0.07		
1.45-2.45	FedNAS	86.41 ± 0.1	$ 55.82 \pm 0.29 $	$ 69.97 \pm 0.27 $		
	SuperFedNAS	90.93 ± 0.23	57.85 ± 0.31	75.08 ± 0.7		
	FedAvg	89.44 ± 0.67	45 ± 0.27	66.02 ± 0.13		
2.45-3.75	FedNAS	89.43 ± 0.36	$ 58.39 \pm 0.23 $	$ 71.93 \pm 0.13 $		
	SuperFedNAS	91.34 ± 0.3	58.25 ± 0.39	$\boxed{75.38 \pm 0.73}$		

Text Dataset

	Million MACs	Method	$ { m Test\ Accuracy\ (\%)} $	
	0-0.5	FedAvg	48.52 ± 0.11	T E C
		SuperFedNAS	48.22 ± 0.27	Tough FL Sett
	0.5-1	FedAvg	49.17 ± 0.02	1. Shakespear
		SuperFedNAS	49.81 ± 0.16	dataset
	1-1.5	FedAvg	51.94 ± 0.03	
		SuperFedNAS	53.26 ± 0.06	(LEAF benchm
	1.5-2.75	FedAvg	53.48 ± 0.09	2. Non-iid, &
		SuperFedNAS	54.59 ± 0.15	660 clients
	2.75-4.0	FedAvg	53.62 ± 0.1	OOO CHCHCS
		SuperFedNAS	54.61 ± 0.13	

ough FL Setting. Shakespeare ataset EAF benchmark)

Takeaways

Multi-Stage Supernet FL Training has high training costs.

Cost (GByl 3000

Both naïve methods suffer from slow convergence and sub-optimal accuracy due to interference. Don't Solve C1 and C2.

Maxnet: Novel Supernet FL-Training Technique

Single-Stage Paradigm (Solves C1). Optimizes a novel objective that:

- Improves worst-performing DNN arch on each data partition.
- 2. Samples DNN archs based on overlap $G(W, \alpha_i) = W \& DNN$ arch. Loss

DNN Arch. $\in \mathcal{A}$	Method	Test Accuracy (%)			
DIVIN AICH.	Medilod	non-iid=100	non-iid=1	non-iid=0.1	
	FedAvg	85.25 ± 0.46	83.42 ± 0.19	77.15 ± 2.5	
Smallest	Single-Staged Supernet FL	84.6 ± 0.19	83.17 ± 0.12	$ 76.28 \pm 1.31 $	
Smanest	Multi-Staged Supernet FL	84.53 ± 0.58	82.82 ± 0.34	$ 76.26 \pm 2.35 $	
	MaxNet	89.42 ± 0.11	88.69 ± 0.2	$ 81.81 \pm 1.59 $	
	FedAvg	89.44 ± 0.67	87.88 ± 0.7	81.24 ± 1.99	
Langert	Single-Staged Supernet FL	87.14 ± 0.2	86.03 ± 0.26	80.02 ± 2.07	
Largest	Multi-Staged Supernet FL	86.45 ± 0.53	85.02 ± 0.32	$ 78.57 \pm 2.48 $	
	MaxNet	91.34 ± 0.3	90.91 ± 0.15	84.72 ± 1.78	

Specialized DNNs for Target Depl.

- SuperFedNAS specializes DNN archs for different deployment targets
- Solves C2
- Wide/Deep DNN for GPU
- Thin/Shallow DNN for CPU

NvidiaRTX 2080 Ti